Microcalcification after excitotoxicity is enhanced in transgenic mice expressing parvalbumin in all neurones, may commence in neuronal mitochondria and undergoes structural modifications over time.
نویسندگان
چکیده
AIMS Parenchymal microcalcification in the brain coincides with neurodegenerative diseases, but is also frequently found in neurologically normal individuals. The origin and role of this process are still under debate. Parvalbumin (PV) is a protein acting as a Ca(2+) buffer and Ca(2+) shuttle towards intracellular Ca(2+) sinks, like mitochondria and the endoplasmic reticulum. Constitutively, it is present in a subset of inhibitory neurones. In transgenic mice expressing pan-neuronal PV, the mitochondrial volume is reduced. We tested whether elevated levels of intraneuronal [Ca(2+)] and reduced mitochondrial volume in the neurone interfere with the generation of parenchymal microcalcification. METHODS The striatum of wild type and transgenic mice was injected with the glutamate receptor agonist ibotenic acid (IBO), which is known to induce not only excitotoxic neurodegeneration, but also parenchymal calcification. Sections were studied by light and electron microscopy at various time points after IBO application. RESULTS Morphometric analysis 2, 4 and 20 weeks after IBO application revealed microcalcification in transgenic and wild type mice; the calcification process, however, was enhanced and accelerated in the transgenic animals. Ultrastructural analyses suggest neuronal mitochondria as the nucleators of the deposits which consist of hydroxyapatite. The time-dependent changes in size and surface structure of the deposits indicate the presence of biological mechanisms in the brain promoting regression of bioapatites. CONCLUSIONS The overload of intraneuronal [Ca(2+)] in combination with impaired mitochondrial function activates neuronal microcalcification. It is hypothesized that this process is an alternative/adaptive mechanism of the neurone to reduce further brain damage.
منابع مشابه
Ectopic parvalbumin expression in mouse forebrain neurons increases excitotoxic injury provoked by ibotenic acid injection into the striatum.
A neuroprotective role for Ca(2+)-binding proteins in neurodegenerative conditions ranging from ischemia to Alzheimer's disease has been suggested in several studies. A key phenomenon in neurodegeneration is the Ca(2+)-mediated excitotoxicity brought about by the neurotransmitter glutamate. To evaluate the relative ability to resist excitotoxicity of neurons containing the slow-onset Ca(2+)-bin...
متن کاملThe role of parvalbumin and calbindin D28k in experimental scrapie.
AIMS Prion diseases are generally characterized by pronounced neuronal loss. In particular, a subpopulation of inhibitory neurones, characterized by the expression of the calcium-binding protein parvalbumin (PV), is selectively destroyed early in the course of human and experimental prion diseases. By contrast, nerve cells expressing calbindin D28 k (CB), another calcium-binding protein, as wel...
متن کاملResponses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملP96: Progress in the Treatment of Alzheimer’s Disease by Gene Therapy
Alzheimer’s disease (AD) is a progressive neurological disorder characterized by the aggregation of two proteins, amyloid-b and hyper phosphorylated tau, and by neuronal and synaptic loss. The progress of gene-modified cells and stem cells is a particularly promising therapeutic method for AD. Gene-Modified Cell-Based Therapy for AD prior to transplantation can be beneficial for increasin...
متن کاملPhysiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice.
The processing of sensory, including nociceptive, information in spinal dorsal horn is critically modulated by spinal GABAergic neurones. For example, blockade of spinal GABA(A) receptors leads to pain evoked by normally innocuous tactile stimulation (tactile allodynia) in rats. GABAergic dorsal horn neurones have been classified neurochemically and morphologically, but little is known about th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropathology and applied neurobiology
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2009